skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kew, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Marine dissolved organic matter (DOM) contains a complex mixture of small molecules that eludes rapid biological degradation. Spatial and temporal variations in the abundance of DOM reflect the existence of fractions that are removed from the ocean over different time scales, ranging from seconds to millennia. However, it remains unknown whether the intrinsic chemical properties of these organic components relate to their persistence. Here, we elucidate and compare the molecular compositions of distinct DOM fractions with different lability along a water column in the North Atlantic Gyre. Our analysis utilized ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry at 21 T coupled to liquid chromatography and a novel data pipeline developed in CoreMS that generates molecular formula assignments and metrics of isomeric complexity. Clustering analysis binned 14 857 distinct molecular components into groups that correspond to the depth distribution of semilabile, semirefractory, and refractory fractions of DOM. The more labile fractions were concentrated near the ocean surface and contained more aliphatic, hydrophobic, and reduced molecules than the refractory fraction, which occurred uniformly throughout the water column. These findings suggest that processes that selectively remove hydrophobic compounds, such as aggregation and particle sorption, contribute to variable removal rates of marine DOM. 
    more » « less
  2. Summary Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza‐assisted Fe processing in plants, remains largely unexplored.We conducted mesocosms inPinusplants inoculated with different ectomycorrhizal fungi (EMF)Suillusspecies under conditions with and without Fe coatings. Meta‐transcriptomic, biogeochemical, and X‐ray fluorescence imaging analyses were applied to investigate early‐stage mycorrhizal roots.While Fe addition promotedPinusgrowth, it concurrently reduced mycorrhiza formation rate, symbiosis‐related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade‐offs between Fe‐enhanced plant growth and symbiotic performance. However, the extent of this trade‐off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe‐related functions than single‐EMF species. This subsequently triggered various Fe‐dependent physiological and biochemical processes inPinusroots, significantly contributing toPinusgrowth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content.Our study offers critical insights into how EMF communities rebalance benefits of Fe‐induced effects on symbiotic partners. 
    more » « less
  3. Abstract High‐resolution mass spectrometry (HRMS) has become a vital tool for dissolved organic matter (DOM) characterization. The upward trend in HRMS analysis of DOM presents challenges in data comparison and interpretation among laboratories operating instruments with differing performance and user operating conditions. It is therefore essential that the community establishes metric ranges and compositional trends for data comparison with reference samples so that data can be robustly compared among research groups. To this end, four identically prepared DOM samples were each measured by 16 laboratories, using 17 commercially purchased instruments, using positive‐ion and negative‐ion mode electrospray ionization (ESI) HRMS analyses. The instruments identified ~1000 common ions in both negative‐ and positive‐ion modes over a wide range ofm/zvalues and chemical space, as determined by van Krevelen diagrams. Calculated metrics of abundance‐weighted average indices (H/C, O/C, aromaticity, andm/z) of the commonly detected ions showed that hydrogen saturation and aromaticity were consistent for each reference sample across the instruments, while average mass and oxygenation were more affected by differences in instrument type and settings. In this paper we present 32 metric values for future benchmarking. The metric values were obtained for the four different parameters from four samples in two ionization modes and can be used in future work to evaluate the performance of HRMS instruments. 
    more » « less